In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least, this saves the effort of retyping that particular sequence of commands each time it is invoked.
Example 2-1. cleanup: A script to clean up the log files in /var/log
# cleanup # Run as root, of course. cd /var/log cat /dev/null > messages cat /dev/null > wtmp echo "Logs cleaned up." |
Example 2-2. cleanup: An enhanced and generalized version of above script.
#!/bin/bash # cleanup, version 2 # Run as root, of course. LOG_DIR=/var/log ROOT_UID=0 # Only users with $UID 0 have root privileges. LINES=50 # Default number of lines saved. E_XCD=66 # Can't change directory? E_NOTROOT=67 # Non-root exit error. if [ "$UID" -ne "$ROOT_UID" ] then echo "Must be root to run this script." exit $E_NOTROOT fi if [ -n "$1" ] # Test if command line argument present (non-empty). then lines=$1 else lines=$LINES # Default, if not specified on command line. fi # Stephane Chazelas suggests the following, #+ as a better way of checking command line arguments, #+ but this is still a bit advanced for this stage of the tutorial. # # E_WRONGARGS=65 # Non-numerical argument (bad arg format) # # case "$1" in # "" ) lines=50;; # *[!0-9]*) echo "Usage: `basename $0` file-to-cleanup"; exit $E_WRONGARGS;; # * ) lines=$1;; # esac # #* Skip ahead to "Loops" chapter to understand this. cd $LOG_DIR if [ `pwd` != "$LOG_DIR" ] # or if [ "$PWD" != "$LOG_DIR" ] # Not in /var/log? then echo "Can't change to $LOG_DIR." exit $E_XCD fi # Doublecheck if in right directory, before messing with log file. # far better is: # --- # cd /var/log || { # echo "Cannot change to necessary directory." >&2 # exit $E_XCD; # } tail -$lines messages > mesg.temp # Saves last section of message log file. mv mesg.temp messages # Becomes new log directory. # cat /dev/null > messages #* No longer needed, as the above method is safer. cat /dev/null > wtmp # > wtemp has the same effect. echo "Logs cleaned up." exit 0 # A zero return value from the script upon exit #+ indicates success to the shell. |
The sha-bang ( #!) at the head of a script tells your system that this file is a set of commands to be fed to the command interpreter indicated. The #! is actually a two-byte [1] "magic number", a special marker that designates a file type, or in this case an executable shell script (see man magic for more details on this fascinating topic). Immediately following the sha-bang is a path name. This is the path to the program that interprets the commands in the script, whether it be a shell, a programming language, or a utility. This command interpreter then executes the commands in the script, starting at the top (line 1 of the script), ignoring comments. [2]
#!/bin/sh #!/bin/bash #!/usr/bin/perl #!/usr/bin/tcl #!/bin/sed -f #!/usr/awk -f |
Each of the above script header lines calls a different command interpreter, be it /bin/sh, the default shell (bash in a Linux system) or otherwise. [3] Using #!/bin/sh, the default Bourne Shell in most commercial variants of UNIX, makes the script portable to non-Linux machines, though you may have to sacrifice a few Bash-specific features (the script will conform to the POSIX [4] sh standard).
Note that the path given at the "sha-bang" must be correct, otherwise an error message, usually "Command not found" will be the only result of running the script.
#! can be omitted if the script consists only of a set of generic system commands, using no internal shell directives. Example 2, above, requires the initial #!, since the variable assignment line, lines=50, uses a shell-specific construct. Note that #!/bin/sh invokes the default shell interpreter, which defaults to /bin/bash on a Linux machine.
![]() | This tutorial encourages a modular approach to constructing a script. Make note of and collect "boilerplate" code snippets that might be useful in future scripts. Eventually you can build a quite extensive library of nifty routines. As an example, the following script prolog tests whether the script has been invoked with the correct number of parameters.
|
[1] | Some flavors of UNIX (those based on 4.2BSD) take a four-byte magic number, requiring a blank after the !, #! /bin/sh. | |
[2] | The #! line in a shell script will be the first thing the command interpreter (sh or bash) sees. Since this line begins with a #, it will be correctly interpreted as a comment when the command interpreter finally executes the script. The line has already served its purpose - calling the command interpreter. | |
[3] | This allows some cute tricks.
Also, try starting a README file with a #!/bin/more, and making it executable. The result is a self-listing documentation file. | |
[4] | Portable Operating System Interface, an attempt to standardize UNIX-like OSes. |